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Abstract 13 

Vegetation phenological shifts impact the terrestrial carbon and water cycle, and affects 14 

local climate system through biophysical and biochemical processes between biosphere 15 

and atmosphere. Dynamic Global Vegetation Models (DGVMs), serving as pivotal 16 

simulation tools for investigating terrestrial ecosystem carbon and water cycles, 17 

typically incorporate representations of vegetation phenological processes. 18 

Nevertheless, it is still a challenge to achieve accurate simulation of vegetation 19 

phenology in the DGVMs. Here, we developed and coupled the spring and autumn 20 

phenology models into one of the DGVMs, LPJ-GUESS. These process-based 21 

phenology models driven by temperature and photoperiod, and are parameterized for 22 

deciduous trees and shrubs using remote sensing-based phenological observations and 23 

reanalysis dataset ERA5 land. The results show that the developed LPJ-GUESS with 24 
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new phenology modules substantially improved the accuracy in capturing start and end 25 

dates of growing seasons. For the start of growing season, the simulated RMSE for 26 

deciduous tree and shrubs decreased by 8.04 and 17.34, respectively. For the autumn 27 

phenology, the simulated RMSE for deciduous tree and shrubs decreased by 22.61 and 28 

17.60, respectively. Interestingly, we have also found that differences in simulated start 29 

and end of growing season can largely alter the ecological niches and competitive 30 

relationships among different plant functional types (PFTs), and subsequentially impact 31 

the community structure and in turn influence the terrestrial carbon and water cycles. 32 

Hence, our study highlights the importance getting accurate of phenology estimation to 33 

reduce the uncertainties in plant distribution and terrestrial carbon and water cycling. 34 

Keywords: LPJ-GUESS, phenology model, model modification, ecological processes   35 
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1. Introduction 36 

Vegetation plays a pivotal role within the terrestrial ecosystem, as the interplay 37 

between vegetation and climate exerts significant influence on the mass and energy 38 

cycles across a broad range of temporal and spatial scales (Zhu et al., 2016; Piao et al., 39 

2019; Chen et al., 2022a). In recent years, with the increase of carbon dioxide 40 

concentration and land surface temperature, significant vegetation greening has been 41 

reported world widely, and the annual growth dynamics of vegetation have undergone 42 

significant changes, especially the spring and autumn phenological changes (Zhu et al., 43 

2016). A large amount of research evidences have indicated that climate change results 44 

in the advancement of spring phenology and the postponement of autumn phenology, 45 

exerting a profound influence on the carbon and water cycles within terrestrial 46 

ecosystems (Piao et al., 2019; Badeck et al., 2004; Zhou et al., 2020), and the 47 

geographic distribution of species (Chuine, 2010; Fang and Lechowicz, 2006; Huang 48 

et al., 2017). Under conditions of sufficient water supply and no radiation constraints, 49 

the extension of the growing season resulting from vegetation phenological shifts will 50 

contribute additional carbon sinks to terrestrial ecosystems (Zhang et al., 2020; Keenan 51 

et al., 2014). Longer growing seasons also lead to greater evapotranspiration, mainly in 52 

early spring and autumn, which in turn reduces watershed runoff (Huang et al., 2017; 53 

Kim et al., 2018; Chen et al., 2022b; Geng et al., 2020). Nevertheless, it is still a 54 

challenge to achieve accurate simulation of vegetation phenology in dynamic global 55 

vegetation models (DGVMs), especially in the context of climate change (Richardson 56 

et al., 2012). We urgingly caution that improving the vegetation phenology module of 57 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



4 

 

DGVMs, and taking the response of vegetation phenology to climate change into 58 

consider comprehensively, which is a necessary development to improve model 59 

simulation accuracy and reduce model uncertainty.  60 

The State-of-the-art DGVMs generally include phenology modules in vegetation 61 

submodels, but the implementations vary widely, which include: 1) using fixed and 62 

prescribed seasonal dynamics to characterize phenology, and the models using this 63 

method include SiB model, SiBCASA model, ISAM model, etc. (Sellers et al., 1986; 64 

Schaefer et al., 2008; Jain and Yang, 2005); 2) using remote sensing data or in-situ 65 

observations directly describing the vegetation growth dynamics instead of process-66 

based simulation, SiB2, BEPS and ED2 are all based on this method to describe the 67 

vegetation growth dynamics (Sellers et al., 1996; Deng et al., 2006; Medvigy et al., 68 

2009); 3) using vegetation phenology model which take the response of vegetation 69 

biophysiology to environment factors into account to simulate vegetation growth 70 

dynamics. In comparison to the first two methods, the third approach offers the 71 

advantage of depicting the responses of vegetation to the external environment 72 

grounded in plant physiological processes , and can trace the dynamics of vegetation 73 

growth amidst changing environment conditions, so it is adopted by several DGVMs, 74 

e.g. Biome-BGC, ORCHIDEE and LPJ-GUESS (Thornton et al., 2002; Krinner et al., 75 

2005; Sitch et al., 2003). With the evolving comprehension of the intricate response 76 

mechanisms of vegetation to external environment, vegetation phenological models 77 

have experienced substantial advancements in recent decades, which encompass shifts 78 

from single-process to multi-process mechanisms and from single-variable to multi-79 
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factor model constraints. (Liu et al., 2018; Fu et al., 2020; Piao et al., 2019). For spring 80 

phenological models, in the early stage, temperature was the only factor considered, 81 

resulting in relatively simplistic model processes, which was also commonly adopted 82 

by DGVMs (GDD and Unified etc.) (Sarvas, 1972; Chuine, 2000). With the deepening 83 

of the understanding of spring phenological mechanism, factors such as radiation and 84 

photoperiod have been introduced into the phenological model, and the corresponding 85 

complex regulatory mechanisms have also been perfected, e.g. Sequential model, 86 

Parallel model and DROMPHOT model etc. (Hänninen, 1990; Kramer, 1994; Caffarra 87 

et al., 2011). As for the autumn phenological model, the early model form was also 88 

relatively simple (cold temperature-driven CDD model) but widely used in DGVMs, 89 

and some DGVMs used fixed leaf longevity for determination of autumn phenological 90 

dates. The development of relatively complex autumn phenological mechanism models 91 

is relatively late, and these advanced autumn phenological models take photoperiod and 92 

carbon accumulation into account in the model process, such as DM model, 93 

photosynthesis-influenced autumn phenology (PIA) model (Zani et al., 2020; Delpierre 94 

et al., 2009). Many researches have pointed out that early phenological models tend to 95 

be overly simplistic and result in biased predictions, which indicates that the vegetation 96 

phenological models of DGVMs need to be updated urgently (Kucharik et al., 2006; 97 

Ryu et al., 2008). The use of more accurate phenological models covering more 98 

complex mechanisms is of great significance to reduce the simulation errors of DGVMs 99 

and improve the simulation reliability under future climate warming. 100 

In this study, we used the remote sensing-based phenology data together with 101 
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threshold and maximum rate of change method to parameterize the spring 102 

DROMPHOT model and autumn DM model for boreal needle leaved summergreen tree 103 

(BNS), Shade-intolerant broadleaved summergreen tree (IBS), shade-tolerant 104 

temperate broadleaved summergreen tree (TeBS) and summergreen shrubs plant 105 

function types (PFTs). The new phenology module with these parameters were coupled 106 

into the LPJ-GUESS model. The objectives of this study are as follows:1) to couple 107 

more mechanistic phenology modules into LPJ-GUESS to improve the accuracy of 108 

spring and autumn phenology simulations; (2) to assess the impacts of different 109 

vegetation phenological algorithms on the carbon and water process simulations. 110 

2. Materials and methods 111 

2.1 Datasets  112 

2.1.1 GIMMS NDVI4g 113 

Normalized differential vegetation index (NDVI) is commonly used as a proxy for 114 

vegetation canopy greenness and growth condition. In the study, we used the forth-115 

generation NDVI dataset of GIMMS, which provides biweekly NDVI records with a 116 

spatial resolution of 1/12° (~8 km), during 1982-2017 to extract the start and end of 117 

growing season (Pinzon and Tucker, 2014; Tucker et al., 2005; Cao et al., 2023). This 118 

NDVI dataset has been refined and corrected for orbital drift, calibration, viewing 119 

geometry, and volcanic aerosols, which can accurately reflect the accurate growth 120 

dynamics of surface vegetation (Kaufmann et al., 2000).  121 

2.1.2 ERA5-land daily air temperature 122 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

The ERA5-Land daily air temperature dataset has been used to parameterize spring 123 

and autumn phenological algorithms and force LPJ-GUESS model. The dataset is a 124 

global reanalysis dataset developed by the European Centre for Medium-Range 125 

Weather Forecasts (ECMWF), which utilises advanced data assimilation techniques 126 

combining observations from various sources, such as satellites, weather stations, and 127 

weather balloons, with numerical weather prediction models. We downloaded the 128 

ERA5 land daily air temperature at 0.5° spatial resolution (consistent with CRU NCDP 129 

data, from 1982-2015) from their official website 130 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form). 131 

Due to possible bias between different data sets, we calculated the monthly average of 132 

ERA5 land daily air temperature and calculated its climatology, as well as climatology 133 

of CRU NCEP monthly air temperature data, and corrected the bias of ERA5 land data 134 

according to the deviation. 135 

2.1.3 GLC 2000 land cover data 136 

Satellite remote sensing can capture the collective information from mixed pixels 137 

comprised of various plants and also information from dominant vegetation. The data 138 

acquired through satellite remote sensing can be regarded as representative of a 139 

particular vegetation type only when the plant functional types within a gridcell exhibit 140 

a relatively homogeneous composition. Based on GLC2000 land cover types data, 141 

which are designated according to PFTs ascribed to satellite images and ground-truth 142 

by regional analysts with 1 km spatial resolution (Bartholome and Belward, 2005), we 143 

calculated the proportion of different PFTs in the 0.5°×0.5° gridcell to identify pixels 144 
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dominated by a specific plant functional type (the proportion of a specific plant function 145 

type is greater than 50%, Fig. 1 and Fig. S1). 146 

Figure 1. The spatial distributions of 11 detailed regional land-cover types in the 147 

GLC2000 products. BNS: Deciduous needle forest, IBS&TeBS: Open deciduous 148 

broadleaf forest and closed deciduous broadleaf forest, Shrubs: Sparse herbaceous or 149 

sparse shrub cover and Deciduous shrub. 150 

2.2 Phenology dates extraction 151 

We used five phenological extraction methods, which includes three threshold-152 

based methods (i.e. Gaussian-Midpoint, Spline-Midpoint and Timesat-SG Methods) 153 

and two change rate-based methods (i.e. the HANTS-Maximum and Polyfit-Maximum 154 

methods) following previous studies (Cong et al., 2012; Savitzky and Golay, 1964; 155 

Chen et al., 2023), to retrieval spring (start of growing season, SOS) and autumn (end 156 

of growing season, EOS) phenological events (Fig.S2). Phenological extraction based 157 

on multiple methods consists of three steps: 1) smoothing and interpolating the NDVI 158 

date to obtain the smooth and continuous NDVI daily time series; 2) using the threshold 159 

value (0.5 for SOS and 0.2 for EOS) or the maximum rate of change to extract the 160 
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vegetation phenology from each single method (Reed et al., 1994; White et al., 1997; 161 

White et al., 2009; Piao et al., 2006); 3) averaging the phenological results obtained by 162 

different extraction methods to reduce uncertainties associated with a single method 163 

(Due to the different fitting methods, interpolation methods and threshold settings of 164 

different extraction methods) (Fu et al., 2021; Fu et al., 2023).  165 

2.3 Model description 166 

LPJ-GUESS is a process-based dynamic global vegetation model that can 167 

simulate vegetation dynamics and soil biogeochemical processes across different 168 

terrestrial ecosystems. At gridcell level, the model simulates vegetation growth, 169 

allometry competition, mortality and disturbances (Sitch et al., 2003; Morales et al., 170 

2005; Hickler et al., 2004). The PFTs within the framework of the LPJ-GUESS model 171 

encapsulate the extensive spectrum of structural and functional attributes 172 

characteristic of potential plant species. Within a given area (patch, corresponding in 173 

size approximately to the maximum area of influence of one large adult individual on 174 

its neighbors), plant growth is governed by the synergistic interplay of bioclimatic 175 

constraints and interspecific competition for spatial dominance, access to light, and 176 

vital resources. In a gridcell (stand), it’s typically simulating multiple such patches 177 

to represent different disturbance histories within a landscape, and across these 178 

patches, the modeled properties tend to coalesce towards a singular, overarching 179 

average value.  180 

In LPJ-GUESS model, spring phenology is calculated based on spring heat and 181 

winter cold requirements (Sykes et al., 1996). Plants have certain energy 182 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



10 

 

requirements for budburst, which are expressed by using growing degree days above 183 

5 degrees (GDD5), while growing degree days to budburst is also related to the length 184 

of the chilling period. An increase in chilling periods can reduce the requirement for 185 

growing degree days to budburst, in other words, budburst can be delayed long 186 

enough to minimize the risk that the emerging buds will be damaged by frost 187 

(Equation 1): 188 

𝐺𝐷𝐷 = 𝑎 + 𝑏 × 𝑒−𝑘×𝐶 (1) 

Where a, b and k are PFT-specific constants, and C is the length of chilling 189 

period. GDD represents the growing degree days requirement of a specific PFT at a 190 

chilling period length of C. Growing degree days are defined as the accumulation of 191 

temperatures above the base temperature (generally 5 ℃), and the length of chilling 192 

period is defined as the days that daily mean temperature below 5 ℃.  193 

For autumn phenology, leaf longevity was used as a threshold in the LPJ-194 

GUESS model for the simple prediction of senescence. It is assumed in the model 195 

that autumn phenology occurs when the cumulative complete leaf longevity is greater 196 

than 210 days or the daily average temperature below 5℃ in autumn.  197 

Within each stand, 50 different patches (in this study) were applied to represent 198 

different disturbance histories within a landscape. The simulations over the study 199 

areas included 23 PFTs, which consist of five grass, three bryophytes, eight shrubs 200 

and seven tree PFTs, and the summergreen PFTs involved in the improvement of 201 

vegetation phenological simulation contain BNS, IBS, TeBS and deciduous shrubs  202 

(hereafter called Shrubs), see detailed description in Tang et al. (2023) and Rinnan et 203 
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al. (2020). 204 

2.4 LPJ-GUESS phenology module modification 205 

We improved the spring and autumn phenological modules of the LPJ-GUESS 206 

model by coupling DROMPHOT model and DM model into LPJ-GUESS according to 207 

the phenological module improvement flow chart (Fig.2).  208 

Figure 2 Flowchart of spring and autumn phenological module modification in 209 

LPJ-GUESS. Dotted boxes represent independent work, gray boxes represent different 210 

data sets or intermediate process results, and yellow boxes represent different 211 

calculation methods or model modules. CDD, cold degree days. 212 

The spring phenological model in LPJ-GUESS was replaced by DROMPHOT 213 

model, which introduces the effect of photoperiod on dormancy, and further refined the 214 

spring phenological model into three stages: dormancy induction, dormancy release and 215 

growth resumption (Caffarra et al., 2011). The dormancy induction process is triggered 216 

by a short photoperiod (DRP) and a low temperature (DRT), and finishes when the 217 

cumulant of the product of DRP and DRT reaches a specific threshold (DS > Dcrit, 218 
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Equation 2, 3 and 4): 219 
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Where t0 is the start date of dormancy induction, which defined at September 1st 220 

of the year preceding budburst, DS represents the state of dormancy induction (the 221 

cumulant of daily photoperiod, i.e. DRP, and temperature, i.e. DRT, effect), T is the 222 

daily mean temperature, and DL is day length on day t. aD, bD and DLcrit are model 223 

parameters that regulate the effect of photoperiod and temperature.  224 

Dormancy release and growth resumption start after dormancy induction is 225 

complete (td), which represent a parallel chilling and forcing process, respectively. The 226 

total daily rate of chilling (SC) is defined as the accumulation of daily chilling (RC) as 227 

Equation 5, and the daily forcing (Rf) is determined by both photoperiod and SC 228 

(Equation 6, 7 and 8), that the effect of photoperiod and chilling on Rf counteracts each 229 

other. The increase of photoperiod will decrease Rf while the increase of chilling will 230 

reverse the effect:  231 
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Where aC, cC and Ccrit are the model parameters of chilling process, and hDL, gT 232 

and dF are the model parameters of forcing process. When the total daily rate of forcing 233 

(Sf) reaches a critical value Fcrit, vegetation completely resumes growth and spring 234 

phenological events occurred. Note that gT and hDL must be greater than zero to limit 235 

the monotonicity of Equation 6 and 7. 236 

Since the lack of process based submodule to simulate autumn phenology in LPJ-237 

GUESS model, and only a fixed leaf longevity is used to define occurrence date of 238 

autumn phenology, we introduced autumn phenology process that considers 239 

photoperiod and cold temperature effects by coupling the DM model into the LPJ-240 

GUESS model (Delpierre et al., 2009). The DM model assumes that plants will respond 241 

to low temperature (below base temperature, Tb) only when the photoperiod is below a 242 

critical value (DLcrit), and the daily rate of senescence (Rsen) on that day is determined 243 

by cold temperature and photoperiod (Equation 9,10 and 11): 244 
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Where αpn is a parameter determines that photoperiod shorter than the DLcrit 245 

threshold weaken (αpn equal to 1) or strength (αpn equal to 0) the cold-degree sum effect. 246 

x and y are the indices of the temperature and photoperiod terms in the formula, which 247 

are used to adjust the degree of influence of temperature and photoperiod on Rsen, 248 

respectively. 249 

2.5 Phenological model parameterization 250 

Utilizing the spatial distribution of predominantly homogeneous pixels 251 

corresponding to distinct vegetation types, we partitioned the remote sensing 252 

phenological dataset, and finally obtained the phenological dataset of BNS, IBS, TeBS 253 

and Shrubs for the parameterization of DORMPHOT and DM models. We divided the 254 

phenology dataset into two parts according to the odd or even number of years, the odd-255 

numbered years for model parameter calibration and the even-numbered years for 256 

model validation. Particle swarm optimization (PSO) algorithm was applied to 257 

parameterize the DROMPHOT and DM model for different PFTs, which used the 258 

mixed function that comprehensively considers multiple evaluation indicators as the 259 

objective function ( ( )f mixed , Equation 12), and sets the upper limit of iteration to 260 

5000 times to find the global optimal parameter (Marini and Walczak, 2015; Poli et al., 261 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

2007). The parameters of DROMPHOT model and DM model applicable to BNS, 262 

IBS&TeBS and Shrubs PFTs were found by PSO algorithm (Table S1 and S2). 263 

2( )  100*(1- ) 100*(1- ) 10*f mixed R NSE RMSE= + +  (12) 

Where R2 is coefficient of determination, NSE is Nash–Sutcliffe Efficiency, and 264 

RMSE is Root mean square error. The coefficients in front of each term of the formula 265 

are used to adjust the weights of different evaluation indicators. The smaller the 266 

objective function, the closer the simulated value of the model is to the observed value.  267 

2.6 Simulation set-up 268 

To compare the simulation performance of LPJ-GUESS which employing original 269 

phenological module and modified phenological module (the extended LPJ-GUESS). 270 

We first ran the model using CRU NCEP v7 gridded climate data 271 

(https://rda.ucar.edu/datasets/ds314.3/) which includes monthly air temperature, 272 

precipitation, wind speed, wet days, incoming shortwave radiation and relative 273 

humidity over the period 1901-1978 with a 500 year spin up and saved all model state 274 

variables at the end of 1978 (used the original phenological module, and the status 275 

variables associated with the modified phenological module were also updated and 276 

saved concurrently) to avoid the differences in the simulated vegetation and soil state 277 

variables outside the study period, i.e. 1979-2015 (Viovy, 2018). Then we restarted the 278 

model simulations (applying the original phenological module and modified 279 

phenological module, respectively) with the saved model state variables at the last day 280 

of 1978 and ERA5 land daily air temperature, note that other forcing data were still 281 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



16 

 

from CRU NCEP v7 data set, and printed start (end) of growing season of summer 282 

green PFTs, monthly grid level gross primary productivity (GPP) and actual 283 

evapotranspiration (AET) of each PFT and foliar projection cover (FPC), for 284 

investigating the simulation difference which induced by phenological simulation 285 

differences. 286 

3. Results 287 

3.1 Phenology simulation performance 288 

For spring phenology, DROMPHOT model has the best simulation performance 289 

in the IBS&TeBS region (R2 = 0.62 & NSE = 0.62), followed by in the regions 290 

dominated by BNS (R2 = 0.52 & NSE = 0.52) and Shrubs (R2 = 0.47 & NSE = 0.47) 291 

(Table 1). For autumn phenology the simulation performance was generally worse than 292 

that of spring phenology. The DM model has the best simulation performance in the 293 

Shrubs region, (R2 = 0.39 & NSE = 0.39), followed by in the regions dominated by 294 

BNS (R2 = 0.33 & NSE = 0.32) and IBS&TeBS (R2 = 0.47 & NSE = 0.47) (Table 1). 295 

Table 1 Model performances of DROMPHOT and DM models.  296 

Model 

Plant 

function 

type 

Calibration Validation 

R2 NSE RMSE R2 NSE RMSE 

DROMPHOT 

BNS 0.54 0.53 7.71 0.52 0.52 7.96 

IBS&TeBS 0.61 0.61 7.92 0.62 0.62 7.91 

Shrub 0.45 0.44 11.3 0.47 0.47 11.1 

DM 

BNS 0.28 0.28 10.7 0.33 0.32 10.7 

IBS&TeBS 0.29 0.28 14.9 0.32 0.31 14.4 

Shrub 0.42 0.42 10.4 0.39 0.39 10.5 

R2, coefficient of determination, NSE, Nash–Sutcliffe Efficiency, RMSE, Root mean 297 

square error. BNS, boreal needle leaved summergreen tree, IBS, Shade-intolerant 298 

broadleaved summergreen tree, TeBS, shade-tolerant temperate broadleaved 299 
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summergreen tree and Shrubs, summergreen shrubs plant function types). 300 

 301 

Compared with remote sensing-based vegetation phenological indices, LPJ-302 

GUESS with the original phenological module estimated earlier spring onset and 303 

autumn leaf senescence. The simulated spring phenology matches better than that of 304 

autumn phenology. The extended LPJ-GUESS model has greatly improved the 305 

estimation accuracy in regions dominated by BNS, IBS&TeBS and Shrubs PFTs (Fig. 306 

3 and Fig. S3). For spring phenology, the simulated R2 (RMSE) of the extended LPJ-307 

GUESS model for regions dominated by BNS, IBS&TeBS and Shrubs PFTs were 0.53 308 

(7.84), 0.46 (11.21) and 0.61 (7.92), respectively, which increased (decreased) by 0.26 309 

(5.55), 0.25 (10.53) and 0.12 (17.34) compared with the original phenological module.  310 

We found that PFTs with larger R2 increase in spring phenological simulation also 311 

had smaller RMSE reductions for the extended model, indicating the improvements in 312 

capturing interannual change and the multi-year mean value. The autumn phenology 313 

simulation performance with was greatly improved by integrating DM model for 314 

regions dominated by BNS, IBS&TeBS and Shrubs PFTs, the simulated R2 (RMSE) of 315 

the extended LPJ-GUESS model were 0.31 (10.70), 0.41 (10.42) and 0.31 (14.69), 316 

respectively, which increased (decreased) by 0.11 (15.66), 0.30 (29.56) and 0.29 (17.60). 317 

By comparing the LPJ-GUESS simulated daily LAI before and after coupling the DM 318 

model, we also found that the autumn LAI values simulated by the extended LPJ-319 

GUESS no longer suddenly decrease to 0 over a day, but rather smoothly decrease with 320 

the sigmoid function according to the control of cold temperature and photoperiod (Fig. 321 

S4).  322 
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Figure 3 Comparison of the simulated performance of spring (SOS) and autumn 323 

(EOS) phenology between the original (left blue panels) and the extended (right 324 

red panels) LPJ-GUESS. (a-d) Simulation performance of SOS using the original 325 

LPJ-GUESS, (e-h) Simulation performance of SOS using the extended LPJ-GUESS, 326 

(i-l) Simulation performance of EOS using the original LPJ-GUESS, (m-p) Simulation 327 

performance of EOS using the extended LPJ-GUESS. Blue and red boxes represent 328 

spring and autumn phenological simulations. The spatial geographic map showed the 329 

difference between the simulation results of LPJ-GUESS model and the remote sensing 330 

phenology, with blue representing the model underestimation and red representing the 331 

model overestimation. The dotted lines in the subgraph are 1:1 line.  332 

3.2 Gross primary productivity simulation  333 

Since the PFTs simulated in LPJ-GUESS model include not only BNS, IBS&TeBS 334 

and Shrubs, but also evergreen plants and grass (no development was made to its 335 

phenological simulation in the present study), we found that clear differences between 336 
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two versions of the model mainly appeared in the regions dominated by these deciduous 337 

PFTs with improved phenological modules. We only found small differences in the 338 

regions dominated by evergreen or grassland (Fig. 4c). It is also clear that the original 339 

LPJ-GUESS generally simulated higher GPP than the extended one over the study 340 

period, except for the IBS&TeBS dominated regions, where higher GPP from the 341 

original model can be only found from 1979 to 2000 (Fig. 4d-f). By comparing multiple 342 

years' monthly mean GPP values, it becomes evident that the modified phenology also 343 

influences the seasonal dynamics of GPP. In regions dominated by BNS, the differences 344 

in monthly GPP are primarily noticeable during spring (using modified phenological 345 

module resulted in a -34.9% lower GPP in May compared to original phenological 346 

module, when not specifically stated, the value is that the extended model differs from 347 

the original model, Fig. 4g). In regions dominated by IBS&TeBS, GPP differs in both 348 

spring (-2.8%) and autumn (-6.3%) and the difference is larger in autumn, which mainly 349 

contribute to annually GPP difference (Fig. 4h). In Shrubs dominate regions, we found 350 

differences in GPP in all months (-43.9%), especially in the non-growing season, 351 

indicating that some evergreen plants still exist in the region when the original 352 

phenological module is used, and that changes in vegetation phenology seems 353 

substantially affect vegetation composition in this region (Fig. 4i). Compared with 354 

VPM GPP products, we also found that extended LPJ-GUESS model could simulate 355 

GPP more accurately during transition periods (Fig. S5).  356 

  357 
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 358 

Figure 4 Comparison of gross primary productivity simulations between scenarios 359 

which used original phenological module and modified (DROMPHOT and DM) 360 

phenological module. (a) Scenario used original phenological module, (b) scenario 361 

used modified phenological module, and (c) the difference between the two scenario 362 

mentioned above, blue represents a larger simulation value for the LPJ-GUESS model 363 

using the original phenological module, and red is smaller. (d-f) Annual average GPP 364 

for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. (g-i) Multi-year mean 365 

monthly GPP for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. 366 

 367 

The potential natural plant distribution also confirmed that the gridcells with large 368 

differences in phenological simulations between original and extended LPJ-GUESS has 369 

also large differences in dominant vegetation types (Fig. S3). We selected typical 370 

gridcells in BNS, IBS&TeBS and Shrubs region, and compared their multi-year 371 

variation pattern of FPC, it was found that phenological changes had a significant 372 
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influence on FPC changes in BNS and Shrubs region (Fig. 5). However, in the 373 

IBS&TeBS region (the gridcell dominated by IBS was selected here), although we 374 

found that the difference in phenological simulation effects little on FPC components, 375 

due to the close proportion of IBS and BNE (fierce competition), small changes in FPC 376 

components could also lead to changes in dominant vegetation types (Fig. 5c, d). 377 

Figure 5. Shifts of foliage projection coverage (FPC) of typical gridcell in the 378 

regions dominated by BNS, IBS & TeBS and Shrubs PFTs over the period 1979 - 379 

2015. (a) BNS, (c) IBS&TeBS and (e) Shrubs typical gridcells used original LPJ-380 

GUESS model, (b) BNS, (d) IBS&TeBS and (f) Shrubs typical gridcells used extended 381 

LPJ-GUESS model. 382 

3.3 Evapotranspiration simulation 383 

By comparing the spatial pattern, we found that BNS dominated the regions with 384 

large differences in the modelled AET under the two runs, and the simulation result 385 

https://doi.org/10.5194/gmd-2023-212
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



22 

 

using the original phenological module were significantly larger (3.9%) compared with 386 

that using the modified module (Fig.6c). In the IBS&TeBS dominated region, like GPP, 387 

we found that the scenario using the original phenological module presented a larger 388 

AET during the period 1979-2000, and the two scenarios simulated AET in the Shrubs 389 

dominated region were very close (Fig. 6e-f). The seasonal dynamic patterns of AET in 390 

BNS, IBS&TeBS and Shrubs dominated regions are similar. The AET in spring is 391 

higher than in summer and autumn when the original phenology module is used. This 392 

is because using the original phenology module result in earlier spring phenology. The 393 

increase of AET in spring will exacerbates the water stress in summer and autumn 394 

through legacy effect, and then reduce AET.  395 

 396 

Figure 6 Comparison of actual evapotranspiration simulations between scenarios 397 

which used original phenological module and modified (DROMPHOT and DM) 398 

phenological module. (a) Scenario used original phenological module, (b) scenario 399 
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used modified phenological module, and (c) the difference between the two scenario 400 

mentioned above, blue represents a larger simulation value for the LPJ-GUESS model 401 

using the original phenological module, and red is smaller. (d-f) Annual average AET 402 

for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. (g-i) Multi-year mean 403 

monthly AET for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. 404 

4. Discussion 405 

4.1 Remote Sensing Phenology Facilitates Mixed-Pixel Phenology Modeling 406 

Whether through dynamic global vegetation model simulation or satellite remote 407 

sensing extraction, a key issue in large-scale vegetation phenology research is the scale 408 

transformation of phenology data in mixed pixels. For phenological extraction based 409 

on satellite remote sensing, which is a top-down approach, the spring phenology 410 

extracted from the mixed pixel (without specific dominant vegetation types) is the 411 

information about the dates when the earliest plant leaf-out occurs in the pixel, while 412 

the autumn phenology is the last one to senescence (Chen et al., 2018; Reed et al., 1994; 413 

White et al., 2009; Fu et al., 2014). In addition, the greenness of understory phenology 414 

(low shrub or grass in forest) further complicates the detecting of overstory signal (Ahl 415 

et al., 2006; Tremblay and Larocque, 2001). It is challenging to separate remote sensing 416 

signals into different components by filtering or decoupling methods. The more feasible 417 

method is to detect phenological changes with few mixed species at a small spatial scale 418 

and conducting climate-controlled experiments (Wolkovich et al., 2012).  419 

DGVM-based phenological simulation is based on a bottom-up method, different 420 

from phenological extraction based on remote sensing. Through simulating plant 421 

individuals’ growth, development and senescence in the gridcell, which represents 422 

different signals in the mixed pixels, and finally synthesizes the vegetation signals of 423 
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the whole gridcell. In this study, based on top-down remote sensing phenology and 424 

parameter calibrations for several relatively pure pixels with clear dominance of BNS, 425 

IBS&TeBS and Shrubs PFTs, we integrated these newly calibrated phenology module 426 

at PFT level into the LPJ-GUESS to reproduce the gridcell-level vegetation phenology 427 

for the mixed pixels. The simulation of vegetation phenology for mixed pixels enables 428 

the capture of phenological variability arising from dynamic vegetation changes, as 429 

opposed to the predefined approach reliant on specific pixel vegetation types, which 430 

also partly explains why phenological models based on predefined vegetation types are 431 

difficult to generalize spatially. Leveraging the advantages of wide-ranging remote 432 

sensing phenological monitoring and stable monitoring frequencies, analyzing the 433 

relationship between pixel constituents and vegetation signals, especially in cases 434 

where pixel constituents are relatively uniform, can enhance the accuracy of 435 

phenological simulation for mixed pixels.  436 

4.2 Influence of phenological shifts on ecosystem structure 437 

Our results showed that LPJ-GUESS model which using original phenological 438 

module estimated earlier SOS in BNS, IBS&TeBS and Shrubs dominant regions than 439 

that using the modified phenological module (Fig.3). Earlier spring phenology, which 440 

is closely related to plant growth and development and has a strong influence on 441 

interspecific competition (Roberts et al., 2015; Rollinson and Kaye, 2012), also lead to 442 

a larger dominant area (Fig. S3). In high latitude regions, plants gain a competitive 443 

niche when spring phenology advances, which is mediated by the early snowmelt 444 

synergistic changes of soil temperature and soil water content, and is manifested in a 445 
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wider window of high resource availability and low competition (Zheng et al., 2022). 446 

During this window period, plants can get more light, water and nutrient resources, and 447 

then carry out vegetative growth earlier, and finally increase the leaf area in the spring. 448 

As the community develops, changes in competitive relations at the species or 449 

functional group level in the spring will induce to changes in community composition 450 

(Morisette et al., 2009; Forrest et al., 2010). In the context of climate change, 451 

differences in the phenological responses of different species may further affect the 452 

distribution of species, and the inaccuracy of future phenological dynamic simulations 453 

of different vegetation types in DGVMs will introduce great uncertainty to the 454 

estimation of future potential natural plant distribution (Dijkstra et al., 2011). 455 

4.3 Further development of phenological models 456 

Although we have substantially improved the LPJ-GUESS’ accuracy of simulating 457 

vegetation phenology by coupling calibrated spring (DROMPHT) and autumn (DM) 458 

phenological algorithms at PFT levels, we still see the discrepancy in the grass 459 

dominated regions, which owing to we did not employ the temperature and photoperiod 460 

phenological model for grassland phenology simulation, because many studies indicate 461 

that grassland phenology is also regulated by precipitation (Fu et al., 2021). 462 

Furthermore, the current phenology algorithms only consider the synergistic effects of 463 

temperature and photoperiod, but can be further linked to plant growth and physiology 464 

(Fu et al., 2020; Zohner et al., 2023). In different regions (under different external 465 

conditions), the driving mechanism and effective driving factors of vegetation 466 

phenology process can be different. Temperature is an important factor regulating 467 
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phenology in energy limited regions, while water supply (precipitation, soil moisture 468 

etc.) control cannot be ignored in water limited regions (Prevéy et al., 2017; Fu et al., 469 

2022). For further developing phenological module in DGVMs, on the one hand, it is 470 

necessary to carry out mechanism research of phenology of different species through 471 

controlled experiments, to the end of improving the existing mechanism model. On the 472 

other hand, it is necessary to introduce new methods, such as machine learning, for the 473 

accurate generalization of some complex key nonlinear processes (Fu et al., 2020; Dai 474 

et al., 2023). Through the above two aspects of work, a comprehensive phenological 475 

module can be provided for further improving the accuracy of DGVM models in 476 

simulating the phenological dynamics of different PFTs in different environments. 477 

5. Conclusion 478 

In this study, we parameterized and constructed spring (DROMPHOT) and autumn 479 

(DM) phenology models for BNS, IBS&TeBS and Shrubs PFTs based on the remote 480 

sensing-extracted phenology data. These parameterized DROMPHOT and DM 481 

algorithms were further coupled into the LPJ-GUESS model, and the results showed 482 

that LPJ-GUESS using the modified phenological module substantially improved in 483 

accuracy of spring and autumn phenology compared to the original phenological 484 

module. Furthermore, we found that differences in phenological estimations can have 485 

significant effects on carbon and water cycling processes by influencing plant annual 486 

growth dynamics and ecosystem structure functions. For the carbon cycle, the influence 487 

of phenological differences on BNS- and Shrubs-dominated regions was greater than 488 

that of IBS&TeBS dominated regions, and there were differences in the seasonality of 489 
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monthly GPP simulations with different PFTs. For the water cycle, in the BNS-490 

dominant region, the earlier spring phenology leads to an increase in spring AET, 491 

leading water stress in summer and autumn through legacy effect, and then reducing 492 

AET. We highlighted the importance of phenology estimation and its process 493 

interactions in DGVMs and propose further developments in vegetation phenology 494 

modeling to improve the accuracy of DGVM models in simulating the phenological 495 

dynamics and terrestrial carbon and water cycles.  496 
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Code and data availability 497 

The code version used for this study is stored in a central code repository and will 498 

be made accessible upon request. Details of relevant meteorological driving data and 499 

measured verification data can be obtained from the data description section in this 500 

paper. VPM GPP product can be download from 501 

https://data.nal.usda.gov/dataset/global-moderate-resolution-dataset-gross-primary-502 

production-vegetation-2000%E2%80%932016. 503 
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